Estimating the Microtubule GTP Cap Size In Vivo

نویسندگان

  • Dominique Seetapun
  • Brian T. Castle
  • Alistair J. McIntyre
  • Phong T. Tran
  • David J. Odde
چکیده

Microtubules (MTs) polymerize via net addition of GTP-tubulin subunits to the MT plus end, which subsequently hydrolyze to GDP-tubulin in the MT lattice. Relatively stable GTP-tubulin subunits create a "GTP cap" at the growing MT plus end that suppresses catastrophe. To understand MT assembly regulation, we need to understand GTP hydrolysis reaction kinetics and the GTP cap size. In vitro, the GTP cap has been estimated to be as small as one layer (13 subunits) or as large as 100-200 subunits. GTP cap size estimates in vivo have not yet been reported. Using EB1-EGFP as a marker for GTP-tubulin in epithelial cells, we find on average (1) 270 EB1 dimers bound to growing MT plus ends, and (2) a GTP cap size of ∼750 tubulin subunits. Thus, in vivo, the GTP cap is far larger than previous estimates in vitro, and ∼60-fold larger than a single layer cap. We also find that the tail of a large GTP cap promotes MT rescue and suppresses shortening. We speculate that a large GTP cap provides a locally concentrated scaffold for tip-tracking proteins and confers persistence to assembly in the face of physical barriers such as the cell cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtubule dynamics.

Microtubules are highly dynamic and switch stochastically between growing and shrinking phases both in vivo and in vitro. This non-equilibrium behavior, known as dynamic instability, is based on the binding and hydrolysis of GTP at the nucleotide exchangeable site (E-site) in β-tubulin. Only dimers that have GTP in their E-site can polymerize (red tubulin subunits), but following polymerization...

متن کامل

Microtubules: Sizing Up the GTP Cap

The 'GTP cap' of the microtubule has long been postulated to exist, but a recent experiment gives us the first quantitative measurements of the cap size in the cell.

متن کامل

Evolving Tip Structures Can Explain Age-Dependent Microtubule Catastrophe

Microtubules are key structural and transport elements in cells. The dynamics at microtubule ends are characterized by periods of slow growth, followed by stochastic switching events termed "catastrophes," in which microtubules suddenly undergo rapid shortening. Growing microtubules are thought to be protected from catastrophe by a GTP-tubulin "cap": GTP-tubulin subunits add to the tips of grow...

متن کامل

Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules.

Evidence that 13 or 14 contiguous tubulin-GTP subunits are sufficient to cap and stabilize a microtubule end and that loss of only one of these subunits results in the transition to rapid disassembly(catastrophe) was obtained using the slowly hydrolyzable GTP analogue guanylyl-(a,b)-methylene-diphosphonate (GMPCPP). The minus end of microtubules assembled with GTP was transiently stabilized aga...

متن کامل

Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues.

Microtubules display dynamic instability, with alternating phases of growth and shrinkage separated by catastrophe and rescue events. The guanosine triphosphate (GTP) cap at the growing end of microtubules, whose presence is essential to prevent microtubule catastrophes in vitro, has been difficult to observe in vivo. We selected a recombinant antibody that specifically recognizes GTP-bound tub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012